MATH2050a Mathematical Analysis I

Exercise 5 suggested Solution

- 11. Use the definition of limit to prove the following.

 - (a) $\lim_{x\to 3} \frac{2x+3}{4x-9} = 3$, (b) $\lim_{x\to 6} \frac{x^2-3x}{x+3} = 2$.

Solution:

- (a) Let $f(x) = \frac{2x+3}{4x-9}$, then $|f(x)-3| = |\frac{30-10x}{4x-9}|$. For each $\epsilon > 0$, choose
- $\delta(\epsilon) = min\{1, \frac{\epsilon}{10}\}$, then $\forall x \in (3 \delta(\epsilon), 3 + \delta(\epsilon))$, we have

$$\left| \frac{1}{4x - 9} \right| \le 1, \qquad |30 - 10x| < \epsilon$$

Hence, $|f(x) - 3| \le 1 \times \epsilon$, we have $\lim_{x \to 3} \frac{2x+3}{4x-9} = 3$.

(b) Let
$$f(x) = \frac{x^2 - 3x}{x + 3}$$
, then

$$|f(x) - 2| = \left| \frac{x^2 - 5x - 6}{x + 3} \right| = \left| \frac{x + 1}{x + 3} \right| |x - 6| = \left| 1 - \frac{2}{x + 3} \right| |x - 6|.$$

For each $\epsilon > 0$, choose $\delta(\epsilon) = \min\{1, \frac{\epsilon}{2}\}$, then $\forall x \in (6 - \delta(\epsilon), 6 + \delta(\epsilon))$, we have

$$|1 - \frac{2}{x+3}| \le 1 + \frac{2}{|x+3|} < 2, \qquad |x-6| < \frac{\epsilon}{2}$$

Hence, $|f(x)-2| \leq 2 \times \frac{\epsilon}{2}$, we have $\lim_{x\to 6} \frac{x^2-3x}{x+3} = 2$.

- 12. Show that the following limit does not exist.
 - (d) $\lim_{x\to 0} \sin(\frac{1}{x^2})$. (c) $\lim_{x\to 0} (x + sgn(x))$ (x > 0),

Solution:

(c) Let $\{x_n\}$ be a sequence, $x_n = \frac{1}{n}, n \in \mathbb{N}$; $\{y_n\}$ be a sequence, $y_n = \frac{-1}{n}$, $n \in \mathbb{N}$. Then we have

$$lim(x_n + sgn(x_n)) = 1,$$
 $lim(y_n + sgn(y_n)) = -1$

Notice that $\lim_{x \to 0} \lim_{x \to 0} (x + sgn(x))$ doesn't exist.

(d) Similarly, let $x_n=\frac{1}{\sqrt{n\pi}},\ n\in N;\ y_n=\frac{1}{\sqrt{2n\pi+\pi/2}}$, $n\in N.$ Then we have $limsin(\frac{1}{x_n^2})=0,\qquad limsin(\frac{1}{y_n^2})=1$

Notice that $\lim_{n \to \infty} \lim_{n \to \infty} \sin(\frac{1}{x^2})$ doesn't exist.